10-810 /02-710 Computational Genomics

Differentially Expressed Genes

Data analysis

- Normalization
- Combining results from replicates
- Identifying differentially expressed genes
- Dealing with missing values
- Static vs. time series

Motivation

- In many cases, this is the goal of the experiment.
- Such genes can be key to understanding what goes wrong / or get fixed under certain condition (cancer, stress etc.).
- In other cases, these genes can be used as 'features' for a classifier.
- These genes can also serve as a starting point for a model for the system being studied (e.g. cell cycle, phermone response etc.).

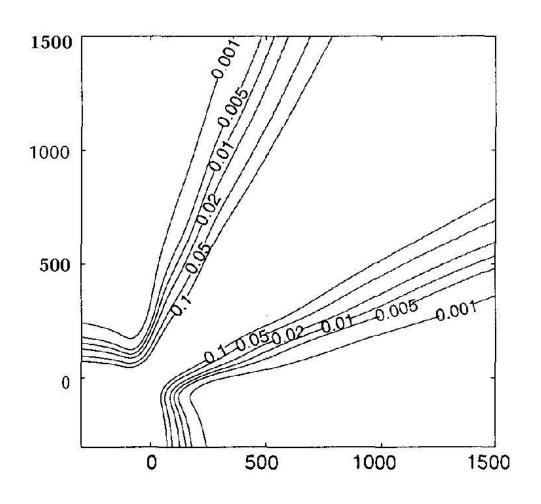
Problems

- As mentioned in previous lectures, differences in expression values can result from many different noise sources.
- Some of these can be related to the technology and so would differ between microarrays and sequencing methods while others are related to biological / experimental variations.
- Our goal is to identify the 'real' differences, that is, differences that cannot be explained by the various errors introduced during the experimental phase.
- Need to understand both the experimental protocol and take into account the underlying biology / chemistry

The 'wrong' way

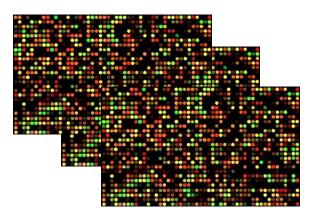
- During the early days (though some continue to do this today) the common method was to select genes based on their fold change between experiments.
- The common value was 2 (or absolute log of 1).
- Obviously this method is not perfect ...

Significance bands for Affy arrays

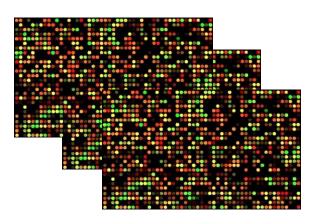


Typical experiment: replicates

healthy



cancer



Dye swap: reverse the color code between arrays

Clinical replicates: samples from different individuals

Hypothesis testing

- A general way of identifying differentially expressed genes is by testing two hypothesis
- Let g_A denote the mean expression of gene g under condition A (say healthy) and g_B be the mean expression under condition B (cancer).
- In this case we can test the following hypotheses:

```
H_0 (or the null hypothesis): g_A = g_B

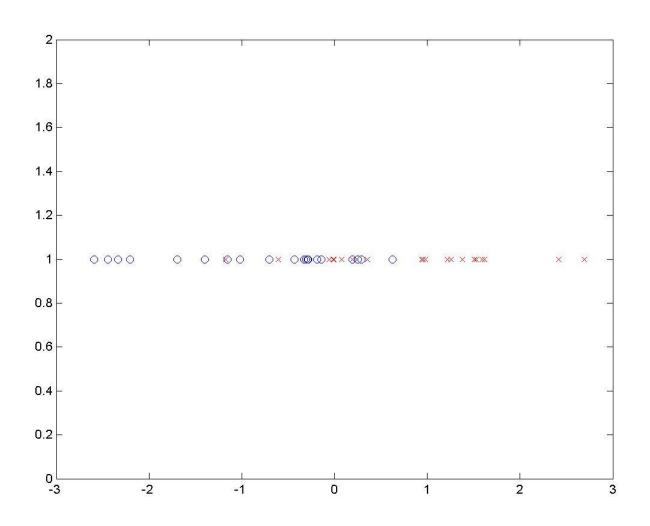
H_1 (or the alternative hypothesis): g_A \neq g_B
```

 If we reject H₀ then gene g has a different mean under the two conditions, and so is differentially expressed

P-value

- Using hypothesis testing we need determine our confidence in the resulting decision
- This is done using a test statistics which indicates how strongly the data we observe supports our decision
- A p-value (or probability value) measures how likely it is to see the data we observed under the null hypothesis
- Small p-values indicate that it is very unlikely that the data was generated according to the null hypothesis

Example: Measurements for one gene in 40 (20+20) experiments of two conditions



Test statistics

- To determine a p-value we need to chose a test statistic
- There are several possible methods that have been suggested and used for gene expression
 - one sample *t* test
 - two sample *t* test
 - non parametric rank tests
 - etc.
- Each requires certain assumptions and you should make sure you understand what they are before using the test.
- We will discuss one such test that is focused on log likelihood ratios using the χ^2 distribution.

Hypothesis testing: Log likelihood ratio test

- If we have a probabilistic model for gene expression we can compute the likelihood of the data given the model.
- In our case, lets assume that gene expression is normally distributed with different mean under the different conditions and the same variance.
- Thus for the alternative hypothesis (\mathbf{H}_1) we have:

$$y_A \sim N(\mu_A, \sigma^2)$$
 $y_B \sim N(\mu_B, \sigma^2)$

and for the null hypothesis (\mathbf{H}_0) we have:

$$y_A \sim N(\mu, \sigma^2)$$
 $y_B \sim N(\mu, \sigma^2)$

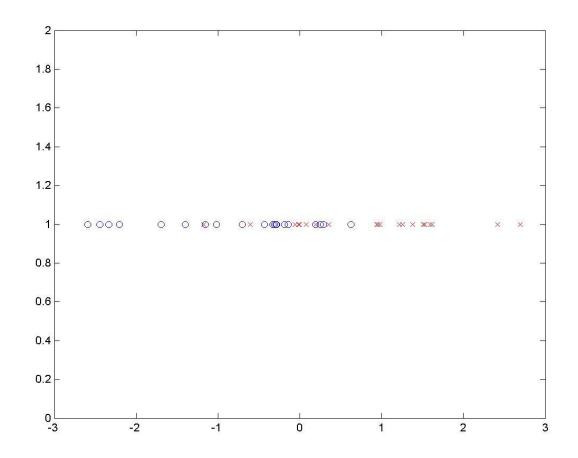
We can compute the estimated means and variance from the data (and thus
we will be using the sample mean and sample variance)

Example mean

Blue mean: -0.81

Red mean: 0.84

Combined mean: 0.02



Data likelihood

Given our model, the likelihood of the data under the two hypothesis is:

$$L(0) = \prod_{i \in A} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y^{i} - \mu)^{2}}{2\sigma^{2}}} \prod_{i \in B} \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(y^{i} - \mu)^{2}}{2\sigma^{2}}}$$

$$L(1) = \prod_{i \in A} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^i - \mu_A)^2}{2\sigma^2}} \prod_{i \in B} \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(y^i - \mu_B)^2}{2\sigma^2}}$$

- We can also compute the ratio of the likelihoods (L(1)/L(0))
- Intuitively, the higher this ratio the more likely it is that the data was indeed generated according to the alternative hypothesis (and thus the genes are differentially expressed).

Log likelihood ratio test

- Here we assume the same variance for both hypotheses
- We use the log of the likelihood ratio, and after using our simplifying assumption arrive it:

$$T = 2 \ln \frac{L(1)}{L(0)} = 2 \ln e^{\left(\sum_{i \in A} (y^i - \mu)^2 + \sum_{i \in B} (y^i - \mu)^2 - \sum_{i \in A} (y^i - \mu_A)^2 + \sum_{i \in B} (y^i - \mu_B)^2\right)/2\sigma^2}$$

Log likelihood ratio test

 We use the log of the likelihood ratio, and after simplifying arrive it:

$$T = 2\ln\frac{L(1)}{L(0)} = \left(\sum_{i \in A} (y^i - \mu)^2 + \sum_{i \in B} (y^i - \mu)^2 - \sum_{i \in A} (y^i - \mu_A)^2 - \sum_{i \in B} (y^i - \mu_B)^2\right) / \sigma^2$$

• T is our test statistics, and in this case can be shown to be distributed as χ^2

Log likelihood ratio test

 We use the log of the likelihood ratio, and after simplifying arrive it:

$$T = 2\ln\frac{L(1)}{L(0)} = \left(\sum_{i \in A} (y^i - \mu)^2 + \sum_{i \in B} (y^i - \mu)^2 - \sum_{i \in A} (y^i - \mu_A)^2 + \sum_{i \in B} (y^i - \mu_B)^2\right) / \sigma^2$$

Log likelihood ratio is an important test statistics which is very commonly used in hypothesis testing

Degrees of freedom

- We are almost done ...
- We still need to determine one more value in order to use the test
- Degrees of freedom for likelihood ratio tests depends on the difference in the number of free parameters
- In this case, our free parameters are the mean and variance
- Thus the difference is ...
- In this case, the difference is 1 (two means vs. one)

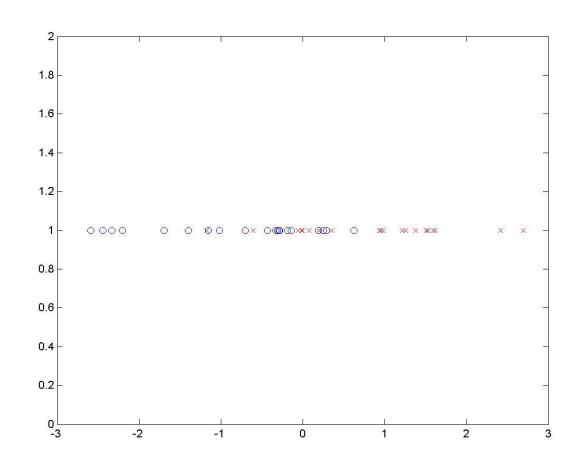
Example: Log likelihood ratio

$$T = 2*(64.3/37.1)$$

= 3.46

D.O.F = 1

P-value = 0.06



Limitations

- We assumed a specific probabilistic model (Gaussian noise) which may not actually capture the true noise factors
- We may need many replicates to derive significant results
- Multiple hypothesis testing

Multiple hypothesis testing

- A p-value is meaningful when one test is carried out
- However, when thousands of tests are being carried out, it is hard to determine the real significance of the results based on the p-value alone.
- Consider the following two cases:

we test 100 genes

we find **10** to be differentially expressed with a p-value < **.01**

we test 1000 genes

we find **10** to be differentially expressed with a p-value < **.01**

We need to correct for the multiple tests we are carrying out!

Bonferroni Correction

- Bonferroni Correction is a simple and widely used method to correct for multiple hypothesis testing
- Using this approach, the significance value obtained is divided by the number of tests carried out.
- For example, if we are testing 1000 genes and are interested in a (gene specific) p-value of 0.05 we will only select genes with a p-value of $0.05/1000 = 0.00005 = 5*10^{-5}$
- Motivation: If

$$p(specific \quad T_i \quad passes \mid H_0) < \frac{\alpha}{n}$$

Then

$$p(some \ T_i \ passes | H_0) < \alpha$$

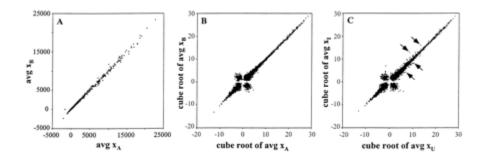
Bonferroni Correction

- The Bonferroni Correction is very conservative
- Using it may lead to missing important genes
- An alternative is to use randomization methods
- Other methods rely on the false discovery rate (FDR) as we discuss for SAM

SAM – Significance Analysis of Microarray

- Relies on repeats.
- Avoid using fold change alone.
- Use permutations to determine the false discovery rate.

Data



- Many genes were assigned negative values
- Many genes expressed at low levels
- Noise is larger for genes expressed at low levels.

Standard test statistics

$$d(i) = \frac{\hat{x}_1(i) - \hat{x}_2(i)}{s(i)}$$

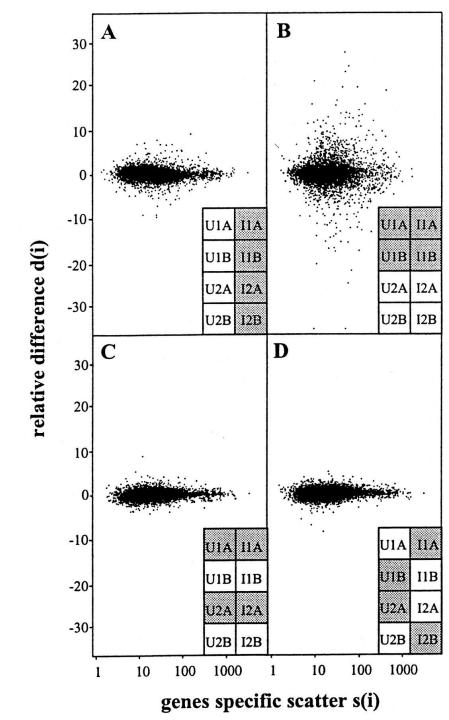
• Where x_1 and x_2 are the observed means and s(i) is the observed standard deviation.

Revised statistics: Relative difference

$$d(i) = \frac{\hat{x}_1(i) - \hat{x}_2(i)}{s(i) + s_0}$$

- Where x_1 and x_2 are the observed means and s(i) is the observed standard deviation.
- S_0 is chosen so that d(i) is consistent across the different expression levels.

Different comparisons of repeated experiments.



Identifying differentially expressed genes

- Using the normalized *d(i)* we can detect differentially expressed genes by selecting a cutoff above (or below for negative values) which we will declare this gene to be differentially expressed.
- However selecting the cutoff is still a hard problem.
- Solution: use the False Discovery Rate (FDR) to choose the best cutoff.

False Discovery Rate

- Percentage of genes wrongly identifies / total gene identified.
- How can we determine this using the p-value?

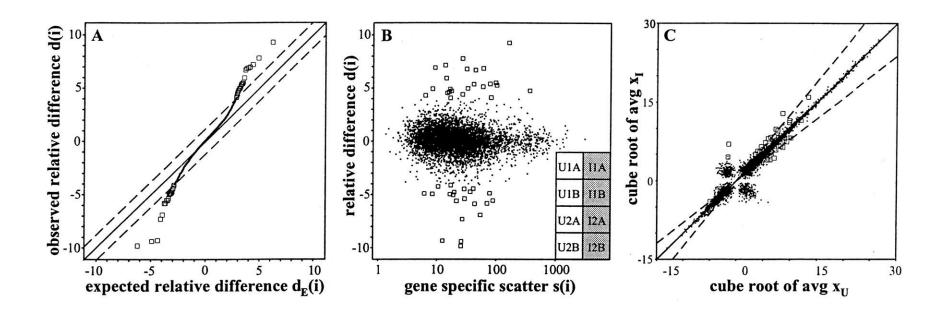
Recall: P-value - probability under the null hypothesis for observing this value

 Given a p-value, the total number of genes tested and the number of genes identified as differentially expression, the FDR can be computed directly.

Determining the FDR

- A permutation based method.
- Use all 36 permutations (why 36?).
- For each one compute the $d_p(i)$ for all genes.
- Scatter plot observed d(i) vs. expected d(i).

Selecting differentially expressed genes



Extensions

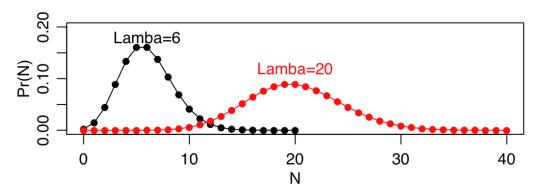
- Can be extended to multiple labels.
- Compute average for each label.
- Compute difference between specific class average and global average and corresponding variance.
- As before, adjust variance to correct for low / high level of expression.

RNA-Seq

Methods Based on Counts

- For microarrays (continuous values) Gaussian-based methods are most common
- Because sequencing data uses discrete counts, other statistical distributions may be more appropriate
- Relevant distributions are
 - Binomial distribution
 - Poisson distribution
 - Negative binomial distribution

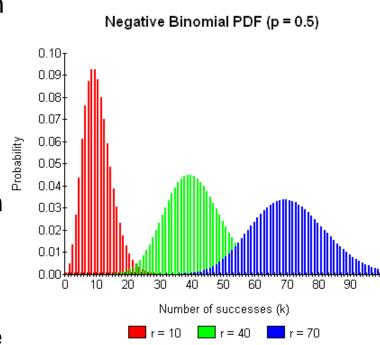
Poisson Distribution



- The Poisson probability mass function is Pr(N)=exp(-λ)λ^N/N!, for rate parameter λ
- The mean and variance of a Poisson random variable is the same: λ
- The consensus is that this model is appropriate for technical replicates but that biological replicates have extra variability.

Negative Binomial Distribution

- The negative binomial distribution is common when count data has variance significantly greater than its mean (overdispersed)
- This is a discrete probability distribution of the number of successes in a sequence of Bernoulli trials before a specified number of events r occurs. For example, if we flip a coin until we see three heads (r = 3), then the probability distribution of the number of tails will be negative binomial.
- The NB distribution has mean λ and variance λ + φλ; as φ goes to 0 it goes to a Poisson
- Appropriate for modeling biological replicates



Negative Binomial Methods

- Different dispersion (φ) for every gene not enough data to estimates this
- Common dispersion (Robinson and Smyth, Biostatistics, 2008) good, but does not include any gene level variability
- Moderated dispersion (Robinson and Smyth, Bioinformatics, 2007) –
 best, but hard to weight gene level vs common dispersion

EdgeR-Robinson's Methods

- R Package
- Normalization
- DF

BIOINFORMATICS APPLICATIONS NOTE

Vol. 26 no. 1 2010, pages 139-140 doi:10.1093/bioinformatics/btp616

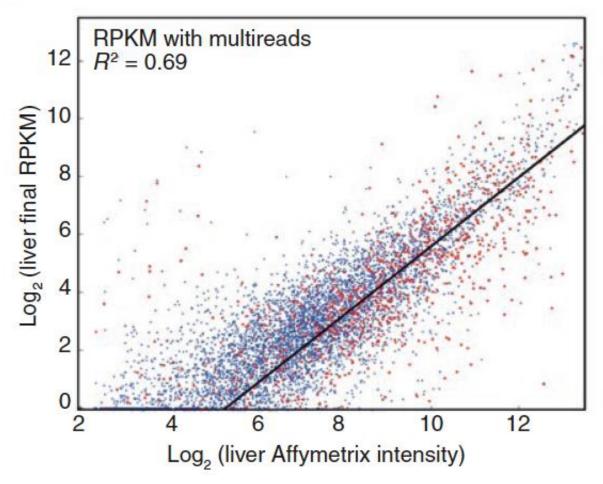
Gene expression

edgeR: a Bioconductor package for differential expression analysis of digital gene expression data

Mark D. Robinson^{1,2,*,†}, Davis J. McCarthy^{2,†} and Gordon K. Smyth²

Cancer Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010 and ²Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, Victoria 3052, Australia

RNA Seq vs Microarrays

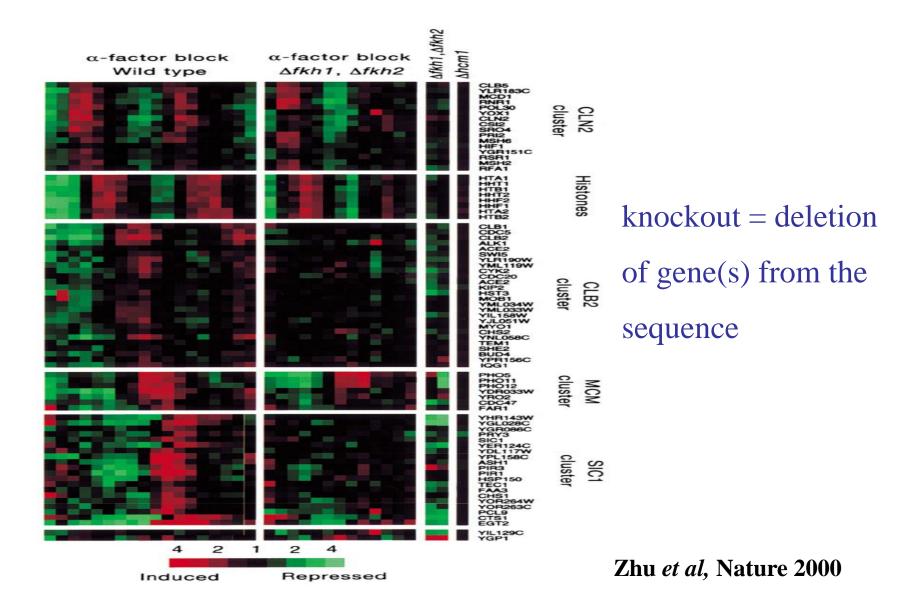


Mortazavi et al., Nature Methods, 2008

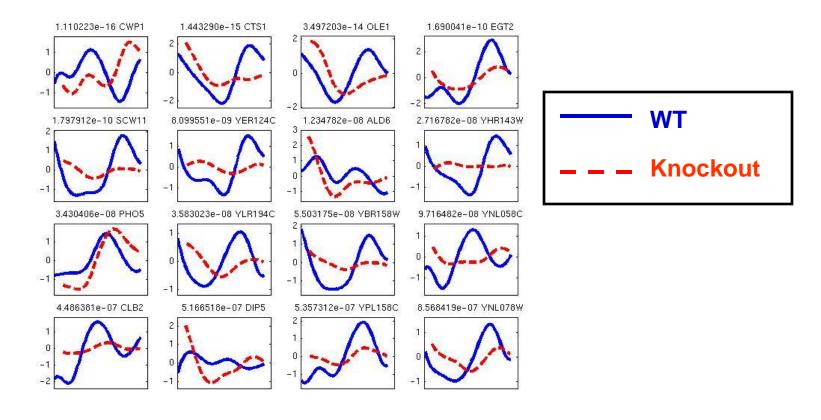
What about time series?

- Comparing time points is not always possible (different sampling rates).
- Even if sampling rates are the same, there are differences in the *timing* of the system under different conditions.
- Another problem is lack of repeats.

Time series comparison



Results for the Fkh1/2 Knockout



What you should know

- Statistical hypothesis testing
- Log likelihood ratio test
- Why SAM is successful:
 - No need to model expression distribution
 - Handles Excel data well